
1

Reproducible Bioinformatics Research for Biologists

Likit Preeyanon*

Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI

Alexis Black Pyrkosz*

Avian Disease and Oncology Laboratory (ADOL), East Lansing, MI

C. Titus Brown

Computer Science & Engineering and Microbiology & Molecular Genetics, Michigan State
University, East Lansing, MI

CONTENTS

1.1 Introduction . 2
1.1.1 Computational analysis in pre-genomic era 2
1.1.2 Computational analysis in the era of next-generation

sequencing . 2
1.1.3 Concerns in Bioinformatic research . 3
1.1.4 Reproducible research is attainable in Bioinformatics

using modern tools . 4
1.1.5 Guidelines for getting started . 5

1.2 Beginner . 5
1.2.1 Computing environment – the new benchtop 5

1.2.1.1 UNIX/Linux operating system 5
1.2.1.2 UNIX tools – the new benchtop tools 6
1.2.1.3 Saving commands . 8
1.2.1.4 Text editors and IDEs – the

bioinformaticians’ word processors 9
1.3 Intermediate . 10

1.3.1 Programming . 10
1.3.2 Programming languages . 10
1.3.3 Good programming practices . 11

1.3.3.1 Code documentation . 11
1.3.3.2 Managing code/text with a version control

system . 12
1.3.3.3 Basic code testing . 13
1.3.3.4 Code testing in real life . 15

1.3.4 A solid foundation . 15
1.4 Advanced . 15

1.4.1 Modularity . 16
1.4.2 Code refactoring . 17
1.4.3 Code optimization . 17
1.4.4 Research documentation . 18

1

2 Dummy title

1.4.4.1 IPython notebook . 18
1.5 Related Topics . 20

1.5.1 Using online resources . 20
1.5.2 Advanced tools . 20

1.5.2.1 Regular expressions . 20
1.5.2.2 Debuggers . 20
1.5.2.3 Unit tests and automated testing 20

1.5.3 Advanced programming topics . 21
1.5.3.1 Object-oriented programming paradigm 21
1.5.3.2 Algorithms and data structures 21
1.5.3.3 Compiled languages . 21

1.6 Conclusion . 21
1.7 Acknowledgments . 22
1.8 Available Resources . 22

1.8.1 Books . 23
1.8.1.1 UNIX/Linux tools . 23
1.8.1.2 Python . 23
1.8.1.3 Others . 23

1.8.2 Online resources . 23
1.8.2.1 UNIX/Linux Tools . 24
1.8.2.2 Python . 24
1.8.2.3 R . 25
1.8.2.4 Web Forums . 25
1.8.2.5 Others . 25

1

1.1 Introduction

1.1.1 Computational analysis in pre-genomic era

At the dawn of computational biology in the 1960s, datasets were small. Protein sequences
were first distributed in the printed Dayho↵ atlases [29] and later on CD-ROM, with bioin-
formaticians eyeballing entire datasets and shu✏ing data by hand. By the 1990s, bioin-
formaticians were using spreadsheet programs and scientific software packages to analyze
increasingly large datasets that included several phage and bacterial genomes. In 2003, the
pre-genomic era ended with the online publication of the human genome[14, 7, 26] and the
National Institutes of Health invested heavily in sequencing related organisms to aid in
annotation. By the mid-2000s, Sanger sequencing was replaced by faster and cheaper next-
generation sequencing technologies, resulting in an explosion of data, with bioinformaticians
racing to develop automated and scalable computational tools to analyze and mine it[3].

1.1.2 Computational analysis in the era of next-generation sequencing

As sequencing becomes ever more a↵ordable, the grand genomic and transcriptomic datasets
that were the dream of many pre-genomic era biologists have become commonplace. A sin-

1
*These authors contributed equally.

Reproducible Bioinformatics Research for Biologists 3

gle experiment in a small research lab can inform on thousands of genes or entire genomes,
and small genomes can be sequenced and assembled in a few hours. Initiatives such as
ENCODE[4, 19], 1000 Genomes Project[2], Cancer Genome Project[10], Human Microbiome
Project[15], Eukaryotic Pathogen and Disease Vector Sequencing Project[20], Clinical Se-
quencing Exploratory Research[23], Centers for Mendelian Genomics[22], Environmental
Genome Project[21], and HapMap Project[24] make vast amounts of data readily available
for download and analysis. As the field comes closer to achieving the $1000 genome[16],
waves of individual genomes will inundate the public databases, providing a rich infor-
mation source for researchers to analyze with a wide array of tools. Further, proteomics,
metabolomics, medical imaging, environmental conditions, and many other kinds of data
are becoming readily available for integration. As scientists continue to push the edge of
data analysis and integration, the integration of these di↵erent data types is increasingly
required. The field has advanced far from the eye/hand methods of the pre-genomic era and
outstripped the spreadsheets and single software packages of the early post-genomic era.
Modern computational analyses are a major part of biological studies [32] and require an-
alyzing gigabytes or terabytes of data in complex computational pipelines, which typically
involve running several distinct programs with custom scripts porting data between them.
These pipelines start from quality control of raw data (or by downloading primary data
from public databases) and pass the data through many steps of calculation, validation,
and statistics. They end with summarization and graphical visualization to aid end-users in
comprehending the complex results. In short, modern biological studies require datasets that
are so large, scientists must use advanced computational tools to perform useful analyses.

Genomics has expanded the drivers of science from hypothesis (devise a question and
design/conduct experiments in response) to include discovery (sifting through large datasets
in search of patterns). With this greater emphasis on statistical analyses of large datasets
and data-driven modeling, even wet-lab biologists are increasingly finding themselves at
the computer instead of the bench[31]. However, many biologists lack a strong background
in mathematics or computer science[6, 27], and struggle to transition from a graphical
computer desktop environment to the command line interface required for many analyses.
Further, while they usually have been trained in good wet-lab practice, they often have
minimal experience with computational practice and lack the knowledge necessary to e�-
ciently perform high-quality reproducible computational research[31, 13]. E↵ectively, many
biologists lack the computational skills they need to perform modern biological studies.

1.1.3 Concerns in Bioinformatic research

Biologists’ lack of computational experience is a significant hindrance as biology expands
to include data- and model-driven methodologies. While the obvious solution is to limit
the computational aspect of biology to trained bioinformaticians and computer scientists,
this is impractical for two reasons: not enough skilled bioinformaticians are available (only
a minuscule percentage of US universities have bioinformatics undergraduate programs),
and many computer scientists are uninterested/uneducated in science. Moreover, the sub-
stantial background in biology required to make appropriate use of data blocks computer
scientists from quickly moving into bioinformatics. As a result, wet-lab biologists have be-
gun to venture into computation in increasing numbers[8, 9]. They are usually long on data
and short on time, so they focus on learning the computational tools needed to analyze
their specific data, concentrating on rapidly processing data with the tools as opposed to
understanding the tools’ underlying assumptions. Even more troubling, there is a cultural
and social gap because many labs and programs do not consider bioinformatics essential
for their biologists[13]. A researcher seeking to analyze large datasets when few or none
of his/her coworkers or superiors have computational expertise may have no clue where

4 Dummy title

to begin, and be given very little time to find or develop appropriate tools. This situation
fosters a dangerously ad hoc approach to bioinformatics.

The e↵ects of this lack of expertise can be dire:

1. Many researchers download computational tools from the Internet or collabora-
tors and use them on large datasets without first running a known test set (the
computational equivalent of a control). Many programs contain technical or scien-
tific errors that will be readily apparent when running test sets, but will be missed
otherwise[9]. Errors will be carried into downstream analyses, costing hundreds of
hours of compute and bench time, and potentially requiring retraction of papers
when the errors are caught[31].

2. Many tools only run on the command line, are di�cult to install, lack documen-
tation, etc., and therefore software may be selected based on ease of use, rather
than accuracy and scientific relevance.

3. With the trial and error approach used to create custom pipelines, biologists
can lose track of which tools they ran, the order in which they ran them, and
the parameter sets used for each. Many biologists have not carried the standard
scientific practice of painstakingly recording wet-lab procedures in laboratory
notebooks over into their computational research.

4. Many biologists use software with the default parameters. The defaults are fre-
quently selected by the original programmers to optimize processing of the original
test data or were based on a set of assumptions that was correct for the original
study, but may not be appropriate for the di↵erent biologist’s data or research
question. While some parameters are relatively insensitive such that the defaults
are su�cient, others will produce wildly di↵erent results if varied slightly. A sin-
gle parameter can be the di↵erence between one group’s results being correct and
another’s being wrong.

5. Those biologists who program their own tools must decide how to release and
support their code. Some labs post their software on a website but rarely update
it. Frequently, as soon as a programmer leaves the lab, their code becomes un-
supported and joins the online graveyard of dead and obsolete code. Some labs
refuse to release their code[18], leading reviewers and collaborators to wonder if
inaccuracies are being hidden.

The good news is that all of these problems can be addressed using tools and practices
that are already available.

1.1.4 Reproducible research is attainable in Bioinformatics using mod-
ern tools

Many tools for reproducible computational research exist and are already being used in
Computer Science, Physics, and Engineering. These tools are routinely used to quality
control the data analysis process, facilitate useful collaborations, and maintain laboriously
developed programs and pipelines in the long term. While these tools may be new to many
biologists, they have been in production for many years and are well-tested with tutorials and
online documentation. Investing time to learn the tools and establishing good habits of using
them yields a larger benefit: errors are consistently detected and corrected early instead of
being discovered only after time-consuming downstream analyses and attempted wet-lab
verification (or after a paper has been submitted or published[17]). The more computational
methods employed by a laboratory, the more essential the tools are to e�ciency, correctness,

Reproducible Bioinformatics Research for Biologists 5

and reproducibility [30]. Further, while use of these tools is currently optional in biology[12],
researchers can expect that within a decade, most journals and granting agencies will require
the appropriate use of tools and methods in computational biology research; the National
Science Foundation already requires detailed discussion of data management.

1.1.5 Guidelines for getting started

Our goal is to help those biologists who have zero or little background in computation to get
started with good practices and tools for computational science. The following sections are
structured to provide introductory knowledge for those biologists venturing into bioinfor-
matics and the command line interface for the first time; intermediate knowledge for those
biologists ready to start programming; and advanced techniques for seasoned programmers
for improving programs and automating pipelines; and a related tools section that names
tools and concepts that readers can seek out once they have established a basic foundation
for reproducible research.

Note: the following sections give overviews and simple examples of the tools, but readers

are encouraged to use the resources listed at the end of the chapter to find specific informa-

tion and step-by-step tutorials. Essentially, this chapter tells readers about existing tools

and why they are important to use, but is not itself a course in computational research. If

readers are interested in more hands-on experience with some of these topics, the Software

Carpentry project (http://software-carpentry.org) o↵ers free online videos as well as 2-day

workshops in these and related areas.

1.2 Beginner

Here we discuss simple practices that beginners can use to establish a strong foundation
for making their computational research reproducible, emphasizing those that are practical
for scientists who primarily run other people’s pipelines and are making the switch from a
graphical user interface to the command line. We describe basic practices such as working
on the command line and selecting a text editor.

1.2.1 Computing environment – the new benchtop

Just as much wet-lab biology work is done on a lab bench with routinely available tools
such as micropipets, shakers, and spectroscopes, computational work is usually performed
on a computer with routinely available data parsing and analysis tools. In this section, we
will discuss computing environments (also sometimes called operating systems or platforms)
and the general tools that stand ready on the computational benchtop.

1.2.1.1 UNIX/Linux operating system

Most biologists are aware of two primary computing platforms available: Windows and
UNIX systems (which include Linux and Mac OS X). In the United States, most people
learn basic computer skills on Windows machines. However, developers of bioinformatics
software primarily use UNIX systems because of the large existing ecosystem of tools, most
of which are open source – meaning that anyone can freely use, modify, and redistribute
resources under open source licenses. The open source or free-software community has long
attracted programmers and other technically-oriented people who creatively solve problems.

6 Dummy title

The Free Software Foundation[25] has numerous open source collections of development
tools, libraries, licenses, and applications for the GNU/Linux system. Consequently, biol-
ogists can get an operating system and all the bioinformatics tools they need for free for
all of their computers and clusters. Further, UNIX systems have traditionally been easier
to use remotely than Windows machines, whether the machine is a desktop computer in
another room, an institution’s high performance compute cluster, or the cloud.

Making the switch from graphical user interface (GUI) based software to command line
software is useful because the power to remix and combine tools at the command line out-
strips that of most GUI-based software; as an analogy, GUI-based software is similar to
a lab that relies exclusively on commercial kits whereas the command line is like a lab
that is also equipped with chemicals and instruments that can be used to supplement the
kits or develop novel techniques. Also, many GUI-based software packages require users to
manually click through an analysis, while the command line can be used to write complete
instructions for an analysis and run many datasets simultaneously. Automation ensures
that each dataset is run according to the same instructions (avoiding human error) and un-
shackles the biologist from the computer. Some GUI and web-based programs are available
for those biologists who want to build pipelines without using the command line (such as
Taverna, Pipeline Pilot, and Galaxy). Further, most cutting-edge bioinformatics tools lack
a GUI, partly because building GUIs is a time-consuming task that is di�cult to fund. As a
result, biologists need basic command line navigation skills to use the latest bioinformatics
software. Biologists who use Windows but wish to take advantage of this cache of software
and tools can download and install a free program such as Cygwin (or MSYS+Mingw32
or Microsoft Interix) to emulate a UNIX system on their Windows machine, or can use
PowerShell.

Note: modern Macintosh machines are a good compromise for modern research labs

because they have a UNIX-based system with a friendly GUI for casual use.

1.2.1.2 UNIX tools – the new benchtop tools

Just as wet-lab biologists use simple tools like pipets, centrifuges, incubators, and gel boxes
individually and then combine them to perform a specific procedure, so bioinformaticians
use simple UNIX tools that each perform a specific task and string them together into
a pipeline. Many UNIX tools come pre-installed on UNIX systems or are freely available
online. These tools are invaluable for the beginning bioinformatician, particularly if that
researcher has no programming experience, because they will perform tasks with speed,
customizability, and reliability that custom scripts cannot easily match. Here, we introduce
some of the most basic, useful UNIX tools for bioinformatics.

Shell

The shell is a language as well as interpreter that reads and interprets commands from
a user. Any biologist who has opened a terminal or command line interface and typed a
command has used the shell. There are several types of shells available for UNIX, but bash is
predominant. Bioinformaticians often use shell commands to run tools and automate tasks
such as running pipelines, backing up data, and submitting jobs on a computer cluster. While
shell languages can be used to develop full-fledged programs, this can be time-consuming
because the shell is designed around operating system tasks rather than data analysis.
Bioinformaticians usually use shell commands to perform routine tasks such as sorting
large datasets, searching for specific data in a group of files, or sifting through a large log
file and printing only the data relevant to a given project; they write programs to perform
more complex tasks. Detailed below are some of the most general and useful tools on UNIX
systems.

Reproducible Bioinformatics Research for Biologists 7

Grep, Sed, Cut, and Awk

grep, sed, cut, and awk are tools for parsing text files. grep is used to quickly search through
a text file for a given word or sequence motif, similar to using a find all command in a word
processor. sed is useful for replacing words or phrases, similar to using the find and replace
command in a word processor. cut is used for selecting a column of data in a text file. awk,
among many other uses, can search through files containing many columns of data and only
print those lines or columns that are needed for a given application. Each tool is useful
when the user needs to perform a single task quickly, create a simple pipeline to accomplish
a combination of simple tasks, or process files that are too large to open in a spreadsheet
program. grep, sed, and awk understand regular expression syntax (covered in the Related
section), which o↵ers more robust pattern searching options.

Apropos and Man

apropos is a program that displays a list of programs related to a keyword. It is useful for
biologists who need to find a tool to perform a specific function without knowing the tool’s
name. For example, if a biologist wanted to archive files, he/she might use the apropos
command to search for an appropriate tool:

$ apropos archive

Note: $ indicates the command prompt or where the user would begin typing. The user

would not actually type the $.

The output will vary depending on system, but should look like:

jar(1) - Java archive tool
libtool(1) - create libraries ranlib - add or update the table of contents of
archive libraries
tar(1) - manipulate tape archives
unzip(1) - list, test and extract compressed files in a ZIP archive...

To learn more about each program, the biologist can look at the standard manual for each
program using a man command (man is short for manual).

$ man tar

In this case, a man command will display a standard manual page, which typically includes
the name of the program, synopsis, detailed description, and options as well as some exam-
ples. Here is an example of the first few lines of the standard manual for the tar program.

NAME
tar -- manipulate tape archives

SYNOPSIS
tar [bundled-flags <args>] [<file> | <pattern> ...] tar -c [options] [files

| directories] tar -r | -u -f archive-file [options] [files | directories] tar
-t | -x [options] [patterns]

DESCRIPTION
tar creates and manipulates streaming archive files. This implementation can

extract from tar, pax, cpio, zip, jar, ar, and ISO 9660 cdrom images and can

8 Dummy title

create tar, pax, cpio, ar, and shar archives...

Note: Apropos and man commands serve as a reference, not a tutorial on how to use a par-

ticular command. Biologists may need to search in Google, Wikipedia, and other resources

(such as software-carpentry.org) to find tutorials, examples, and other information.

History and Script

The shell automatically keeps a record of all commands used in a session. Typing history
will print the list of commands. This tool is useful when a biologist is developing a com-
putational procedure. Once the biologist has determined which commands and parameters
are necessary to perform a required task, he/she can use the history tool to view and save
the commands for future use (see next subsection).

If a biologist needs to save an interactive session at the command-line, he/she can use
the script tool. A record will be generated for all data output to the terminal window.

1.2.1.3 Saving commands

One of the advantages of the command line is that biologists can save the exact commands
and parameters used to perform a computational procedure, as opposed to a GUI-based
procedure where it is di�cult to record which buttons and options were used and the order in
which they were clicked. At the most basic level, biologists can write the commands in their
bound lab notebook. Another option is save the commands in a text file as a rudimentary
electronic notebook so the biologist can search for a procedure later.

Example of shell commands to be written/typed in a bound or electronic notebook:

bowtie-build DataSet001.fa DataSet001.Index
bowtie -m 1 DataSet001.Index DataSet001Reads.fq DataSet001.map

In the example, the biologist is using software that aligns short reads to a reference
sequence database. To use the software, two commands are required: (1) call the program
bowtie-build to read the reference file DataSet001.fa and return the output files with the
prefix DataSet001.Index, and (2) call the program bowtie with the parameter -m 1 using
the files from the previous step and the read file DataSet001Reads.fq as input and name the
resulting alignment file DataSet001.map. By recording these commands exactly as typed in
a notebook, the biologist will know the procedure used to generate the alignment file. If
the biologist has more datasets, then these can be run using the same commands, changing
only the file names. Further, when the biologist is writing up the results several months
later, he/she can include the procedure so the results are credible and reproducible.

The most useful option is to create a short shell script. While this may seem daunting
to a beginner, it is no more di�cult than programming lab equipment (e.g. creating a PCR
program on a thermocycler), and just as the PCR program is recorded in full in a notebook
and used for all subsequent experiments, so can the shell script be painstakingly written
and then simply used and referred to in later analyses.

Example bash script alignMyRnaSeqData.sh

#! /bin/bash
dataName=‘DataSet001’
params=‘-m 1’
bowtie-build $dataName‘.fa’ $dataName‘.Index’
bowtie $params $dataName‘.Index’ $dataName‘Reads.fq’ $dataName‘.map’

Reproducible Bioinformatics Research for Biologists 9

In the example bash script, the biologist has converted the previous example procedure
into a series of commands with the name of the dataset and parameter list turned into
variables. When the biologist needs to run it, he/she will type bash alignMyRnaSeqData.sh
at the command prompt and the instructions will be executed automatically. The beginner
can then manually edit the dataset name or parameter list with a text editor (see next
subsection) each time it is run. Users who need to run the shell script on tens or thousands
of files will benefit from learning a few extra commands so they can make the script loop
through a list of file names. Using the script ensures that each time a dataset is run, the
procedure remains the same, the output files are named systematically, and the biologist
saves time by not having to retype commands or troubleshoot errors from typos.

Bash scripts are particularly useful when testing scientific software with di↵erent param-
eter sets. Biologists may not know that unlike laboratory commercial kits that have been
rigorously tested on a variety of samples by experienced technicians, a significant number
of scientific programs are written by graduate students and other academic researchers who
are trying to solve a specific problem and optimize the parameters to that particular sys-
tem. These default parameter sets are usually untested with other types of data unless the
software has an active community of users who have found many of the problems. There-
fore, biologists using new software should start by running a dataset with a known result (a
control) on the default parameters, and then vary the parameters one by one to determine
their sensitivity. (When possible, the parameters should be looked up in the documentation
and through Internet searches to determine whether they are set to their optimal values
for the current sample type.) Bash scripts are useful for testing parameter sets because
biologists can set default parameters, run the script, change one parameter, and run the
script again, confident that the only change to the procedure is the one they deliberately
made. In the previous example, a biologist would vary the parameters listed in the params
variable for each run. The results are more comparable and reproducible, and automating
the procedure speeds up the parameter optimization process.

1.2.1.4 Text editors and IDEs – the bioinformaticians’ word processors

Text editors are similar to word processors in that they are used to open, create/modify,
and save text files and source code, but di↵erent because they do not save formatting
characters or binary information in the file. Therefore, they produce the clean, simple files
that are needed for running programs and analyzing data. There are many freely available
editors with features such as graphical user interfaces, programming language-specific syntax
highlighting, and advanced text parsing commands. We recommend that biologists learn
cross-platform editors (i.e. can be used on Windows, UNIX systems, etc.), particularly
those biologists who use Windows machines locally and UNIX systems remotely.

Two editors are particularly popular among computational scientists: Emacs and vi (or
Vim). Both editors are cross-platform and have productivity-increasing features such as
macros that can automate tasks, regular expressions to tailor/speed search and replace,
etc. Emacs and vi can also be modified/customized using their internal scripting languages.
This feature makes these two editors highly expandable and flexible. Numerous free plugins
for both editors are developed and maintained by a large user-based community, which also
provides free support for new users.

Integrated development environments (IDEs) provide tool sets including an editor, usu-
ally with advanced features, debugger, package manager, and numerous plugins. The most
popular IDEs such as Eclipse and Netbeans support many languages including C++,
Python, and Ruby, as well as HTML, PHP, and JavaScript for web development. IDEs
also provide a nice GUI, which is built on top of command-line tools. Moreover, online tu-

10 Dummy title

torials are freely available for users of all levels. For biologists who intend to invest heavily
in programming their own tools, IDEs may be a convenient step up from text editors.

1.3 Intermediate

This section addresses programming, the keystone of bioinformatics research. Biologists
will be introduced to programming languages (and how to select one), good programming
practices for developing less error-prone and more e�cient code, program documentation
for self and general use, version control systems as electronic notebooks and distribution
methods, and controls for testing homegrown code. These sections are each intended as an
overview of the tools and practices for writing scripts that are shorter than a page or two
in length. References and tutorials for learning the languages and tools are included at the
end of the chapter.

1.3.1 Programming

Programming is one of the most valuable skills for bioinformaticians. For example, just
as an experienced wet-lab biologist might quickly pour a gel to purify a new sample, a
bioinformatician will write a small script to filter a raw data file. Some scripts only contain
a few lines of code, which are written for immediate use and then discarded. Therefore,
most custom scripts are not documented, tested, or maintained. Major problems arise when
hastily-written scripts are blindly reused for other projects or di↵erent datasets without
proper quality control. In this section we discuss programming tools and approaches that
are important for good computational lab practice.

1.3.2 Programming languages

Programming languages are sets of human-readable instructions that are translated into
machine code to instruct a computer to perform a task. They are generally categorized as
interpreted and compiled. Interpreted (scripting) languages (such as Python, Perl, R, and
Ruby) use an interpreter program to run programs in one step, when the user is executing
the program. Compiled languages (such as C, C++, and Java) use a two-step approach; the
first step, compilation, runs during code development, and produces an executable file that
contains only machine code. This file is then executed by the user. Both types of languages
are widely used in bioinformatics. While compiled languages are generally more di�cult to
learn and time-consuming to use than their counterparts, the programs usually run faster
because the code is translated in advance. This makes compiled languages more suitable
for processing large datasets or performing complex or repetitive calculations. Interpreted
languages are easier to learn and use, especially for beginners; for processing small datasets
or relatively simple tasks, the di↵erence in execution speed is negligible, while the advantage
in development time can be significant.

Biologists with no programming experience should consider using a widely-used inter-
preted language such as Python or Perl. Both languages have a large user-based community,
reference materials, and high-quality third-party libraries for a wide range of application
domains. Another widely used, more domain-specific language for data analysis is R. R is
a language of choice for many statisticians and bioinformaticians because of built-in data
structures that are suitable for data analysis and a large number of libraries for complex
statistical analyses and graphics. Biologists who work on high-throughput data analysis,

Reproducible Bioinformatics Research for Biologists 11

such as microarrays and next-generation sequencing, may need to use libraries written in R
or to run the analysis in R environments. Therefore, a knowledge of both R and Python or
Perl languages is strongly encouraged.

While academia in particular has a culture of developing tools from scratch even when
alternatives are available, this practice is increasingly challenging because pipelines are now
too complex for a single novice programmer to develop quickly and accurately[11]. Third-
party libraries are developed by programmers other than the developers of the language
itself, and extend the language with custom written functions. For example, biologists who
want to develop a bioinformatics web application can use Django, a Python third-party
library that already contains most of the code required to build a Web application. The use
of libraries is encouraged because they reduce errors in a program (i.e. a new programmer
need not develop code that is susceptible to bugs when polished, well-tested code is already
available). It also reduces program size, which increases maintainability (the programmer’s
ability to fix bugs and update code as upgrades to software and scientific methods become
available). Many libraries are actively maintained, developed, and used by a community of
programmers and scientists; therefore, they are well-tested and fairly reliable. Many libraries
also support users via tutorials, online web forums, and mailing lists.

1.3.3 Good programming practices

Just as biologists follow standard lab practices in the wet lab, they should follow standard
computational practices when writing code. For example, biologists frequently write short
scripts to perform simple tasks. While writing a script, the meaning of each command and
program logic is easy to understand. However, after a month or two, it can be nontrivial to
determine the code function, inputs, etc. that were once so clear. Furthermore, as scripts
change over time, multiple versions of each script may be scattered over multiple computers.
This problem is akin to a biologist performing a quick procedure at the bench, and not taking
the time to clean up or write down the procedure in detail.

In this section, we discuss basic programming practices that help programmers organize
their code and make their scripts more reusable for other projects. We also introduce version
control software, which facilitates code distribution among collaborators.

1.3.3.1 Code documentation

All code should be documented in plain English. The main purpose is to inform users about
code function, expected input and output, and usage details, which are collectively called
a code description. This is similar to laboratory equipment being packaged with standard
operating procedures and troubleshooting guides that are available to biologists using the
equipment. The programmer should remember that just as the wet-lab biologist will be
more interested in using an instrument to do an experiment than opening the control panel
and tracing circuits, so will users be focused on using a program to process data rather than
reading source code, and should write the documentation accordingly.

Professional programmers conventionally write a code description at the beginning of
each short program. Code descriptions should be short, providing maximum information in
a minimum of words. For simple scripts, this may be two lines: one for the description and
one to describe the usage. Some people might include the name of the author, date created,
and date modified in the code description; however, when using a version control system
(introduced later in this section), this practice is redundant.

When beginning programmers graduate to bundling scripts, programs, and libraries
together, they should add a README file, which is a text file containing documentation

12 Dummy title

for the entire code repository. The file usually includes the name of the author, contributors,
installation, usage, and licenses for all programs in the repository.

Code readability is important. Experienced programmers customarily use two practices
to improve readability: descriptive variable/function names and concise but clear comments.
For example, a new programmer might write the following code and comment (comment
shown in italics):

x += 1 # add 1 to x

Readers with minimal knowledge of Python will recognize that 1 is added to a variable
x. The comment does not provide any information about the purpose of the statement or
describe x. Instead, the code should be commented like this:

x += 1 # increase the count of DNA sequences read in

This way, a reader will quickly understand that x is the number of DNA sequences read
and the number is being incremented by one. A more useful way to write this statement is:

sequence count += 1 # increase the number of DNA sequences read by one

After choosing a more descriptive variable name, the comment is now largely redundant and
could even be omitted. This is a simple example of how code readability can be improved
by choosing appropriate variable names and commenting code sparingly.

1.3.3.2 Managing code/text with a version control system

A common change tracking nightmare is when a programmer creates a script and sends a
copy to a collaborator, who we’ll call Adam. After a period of time, Adam finds a bug in the
first version of the script and informs the author. The author fixes the bug and sends Version
2 to Adam, not knowing that Adam previously sent Version 1 to other collaborators, Beth
and Celia, who are not privy to Version 2 and therefore are likely to have unknowingly
generated erroneous results with it. Further, Adam may inadvertently confuse Version 1
with Version 2 because the script name is the same for both and the only di↵erence is
in the code, which Adam cannot or does not read. Later, Beth (with Version 1) might
try to compare results on a similar dataset with Adam’s results from Version 2, and spend
considerable time tracking down the reason for the di↵erences. This would result in (at best)
a re-discovery of the bug and (at worst) attempts to publish the erroneous comparison in
a journal. The author, who has meanwhile upgraded to Version 5, is unaware of anything
except that Adam was sent Version 2 a long time ago. This convoluted comedy of errors is
one reason why a technique known as version control is essential in collaborations.

A version control system (VCS) is a program that tracks changes made to a file or set of
files in a specified directory and records them on a central server. Users can add, remove, or
edit files and the version control program will compare each file with the previous version
and record the di↵erences. For a single programmer, a VCS can be a rigorous, e�cient
electronic notebook of changes to a program: as the programmer creates/updates scripts,
with a simple command, each change is meticulously recorded, dated, and archived. For a
team of programmers, a VCS is a group notebook, distribution tool, and collaboration aid.
Each programmer can access the latest version of the code and make changes. If multiple
changes are made by di↵erent programmers to the same file(s), the changes are noted and
automatically merged if possible. Conflicts (in which two programmers modify the same
line or region of code) are flagged for manual resolution. For nonprogrammers, a VCS is a

Reproducible Bioinformatics Research for Biologists 13

useful means of obtaining up-to-date software tools, as the VCS usually contains the most
recently updated version of the software. Users can download code from the VCS and know
exactly which version they are downloading.

Note: VCSs are also commonly used when collaborators are writing a paper using LaTeX

or a similar document markup language. Each collaborator has immediate access to the most

recent version of the paper, can make changes directly to the document, and commit them,

as opposed to trading various versions via email or having one author decipher scribbled-on

printouts.

This is particularly useful when a research lab has one programmer and multiple users
because the programmer can create/edit scripts in the VCS and then users can check that
VCS to determine if they need to download new/updated tools. When publishing computa-
tional analyses, study authors can note the version numbers of the scripts used so biologists
wishing to reproduce the study can be given the correct version. Also, when the programmer
leaves the lab, the latest versions of the tools are in the VCS so a newly hired replacement
can immediately access and start maintaining the code.

Note: while setting up a VCS will require an initial investment of time, subsequent use is

usually limited to a few simple commands. Some VCSs also include a GUI to help beginners

and nonprogrammers use the system.

Some major version control systems (SVN, Git, Mercurial, etc.) are associated with
websites that host repositories for free. For example, GitHub.com hosts more than 200,000
free code repositories for open source projects. These can be accessed freely from any part of
the world. Using GitHub simplifies distribution because individual research labs do not need
to constantly update lab websites with the latest version of a program; they can point lab
members, collaborators, and blog readers to the online repository that the lab programmers
are already updating. It is becoming common to publish a link to a GitHub repository to
fulfill bioinformatic journals’ requirement of open access software, which is advantageous
because the site is separate from university or business websites that may change over time.

Note: biologists who prefer to keep their code for internal use only can set up Git

or Mercurial to work locally only, pay Github for private repositories, or use Bitbucket.

Alternatively, they can set up their own secure server (or have a network administrator set

it up) and use Git or Subversion (SVN).

Real world example

In our lab, every programmer has a Github.com account for their projects. Some projects on
Github are also linked to the lab repository https://github.com/ged-lab, which serves
as the main repository for all source code and other materials written by lab members.
We include a link to the main repository in each publication so anyone can download our
source code and materials for using or reproducing results without first contacting us. In
addition, anyone who finds a bug or wants to contribute to the project can do so by simply
cloning the project, editing or adding code, and submitting a request to merge a change
to the project. This opens up opportunities for improving the quality of scientific software
as well as collaboration. This method has been proven quite successful in the open source
community.

1.3.3.3 Basic code testing

Roughly one to ten programming errors occur per thousand lines of code[5, 12]. In this
section, we discuss two techniques to help programmers find obvious bugs upfront: assert
statements and doctests. We introduce more advanced tools such as unit tests and automatic
testing systems in the Related section.

14 Dummy title

• Assert Statements

The purpose of an assert statement is to compare a calculated value with an expected
value and return true or false based on a programmer-defined condition. Assert statements
can be used to test if code works as expected. They are particularly handy when testing
edge cases such as when a user uses unexpected parameters or data files in unrecognized
formats. For example, if we write a function count gc in Python that returns the number
of G and C nucleotides in a sequence, we could use assert statements to test the function:

assert count gc("ATGTC") == 2
assert count gc("ATTTTA") == 0
assert count gc("") == None

The first line tests whether the count gc function correctly counts the number of G’s and
C’s in the normal case or a mix of all four nucleotides. The second line tests if the func-
tion can correctly handle a calculation where there are no G’s or C’s present, which is
also expected to be a common case. It is good programming practice to always test cases
where zero is the expected result to ensure that it is correctly calculated and reported. The
third line tests if the function recognizes that it has been passed an empty sequence and
correctly reports an error; None is a defined value in Python that indicates “no result”.
In Python, a programmer can also specify an error message if an assert statement fails:

assert count gc("") == None, "Empty sequence, should return None"

In this case, if the function does not return None, the assert statement fails and prints
”Empty sequence, must return None” on the computer screen. This error message alerts
the programmer that the count gc function is not handling the case correctly.

Theoretically, assert statements should check all possible input values; however, this is
not usually practical. In the above example, it would be impossible to generate every
possible sequence that a user may input to the function. Therefore, a programmer will
usually design a representative set of input data to systematically test the code. The
previous example demonstrated this by testing both common and uncommon cases. The
more assert statements added, the more likely an existing error will be found.

Note: assert statements are also useful when the programmer is modifying the code later.

Well-tested programs can be more easily modified and extended because the tests ensure

that changes that break the existing code are more likely to be immediately discovered.

• Doctest

Doctest is a useful feature in Python and several other languages that helps the pro-
grammer document and test his/her code simultaneously. This is particularly useful when
writing documentation for developers planning to use or extend functions, because the
doctests can ensure that the documentation examples are correct. Basically, doctest com-
pares output from the Python interpreter with user-defined output. The test fails if they
do not match. The doctest for the previous function would look like this:

>>>count gc("ATGTC")
2
>>>count gc("ATTTTA")

Reproducible Bioinformatics Research for Biologists 15

0
>>>count gc("")
None

1.3.3.4 Code testing in real life

E↵ective testing catches errors. However, the human programmer can almost never consider
and write tests for all possible ways of breaking code when he/she is developing the first
version of a program; bugs are both inevitable and common. Therefore, writing tests should
be incremental; each newly discovered bug should prompt the addition of a new test.

Tests are useful on many levels, but some programmers still do not write tests[11]. One
reason is that test writing is not formally taught in most undergraduate computer science
courses and therefore many programmers, let alone biologists, lack the required knowledge or
experience. Another reason is because it is time-consuming and not considered a critical path
activity[13, 9]. Rigorous tests may contain more lines of code than the actual code. However,
there is some evidence that programmers who write tests spend less time debugging and
produce higher quality code (see Chapter 12 of [1]). Moreover, time spent repeating an
analysis because of a bug is usually far costlier than time spent writing tests.

1.3.4 A solid foundation

For many biologists, the guidelines introduced in the Beginner and Intermediate sections are
su�cient to build a strong foundation for reproducible computational research. Beginners
should be ready to investigate the tutorials and resources listed at the end of the chapter
to build knowledge and experience with the command line interface: the new benchtop
with open access, high-quality UNIX tools for data processing (without programming),
simple bash scripts to generate reproducible procedures and optimize parameters, and text
editors/IDEs to create and manipulate files across platforms. Intermediate users will be able
to investigate various programming languages to find the one with the most high-quality
libraries and support for their research area, document their code so it can be easily read
and understood by other researchers, use a version control system as an electronic notebook
and up-to-date distribution system for their evolving code, and write systematic tests to
catch bugs early in the development and analysis process.

For most biologists, e↵ectively using already developed software pipelines and writing
small scripts to port data between them or processing large results files with UNIX tools is
all they will need to complement their bench work. By incorporating these tools into their
computational research and observing the computational lab safety practices, biologists can
work e↵ectively on the new benchtop, produce timely, accurate results that are simple to
repeat with bash scripts or short, well-tested programs, and can distribute their programs
per journal requirements using online version control so the research community can spend
less time reinventing and fixing code and more time advancing science.

1.4 Advanced

Once a biologist has built a strong foundation for reproducible computational research,
he/she may wish to progress to more complicated analyses, which accordingly require more
complex calculations. The resulting programs can contain hundreds or thousands of lines of

16 Dummy title

code, more instructions than a single human can keep in his/her head. An eager biologist
who has been developing scripts with less than 50 lines may jump in and create a single file of
several hundred lines. However, once a program has advanced beyond the simple script, new
programming practices need to be followed to produce usable and maintainable code. This
is analogous to chemists running a small reaction in the lab vs. chemical engineers scaling
up a reaction to run in a chemical plant; process and resource management become signifi-
cantly more important. As in the previous sections, these practices facilitate reproducibility,
productivity, and frequently help maintain the programmer’s sanity. In this section, we will
discuss modularity (the practice of writing code in small blocks), refactoring/optimizing
code performance for use with modern huge datasets, and using the IPython notebook
as an interactive notebook/computing environment for integrating di↵erent programs and
platforms and performing a complex analysis from start to finish.

Biologists/bioinformaticians grapple with a major problem before they start designing
a new program: absence of detailed program specifications[13]. In the bioinformatics lab,
programmers frequently have only a piece of the problem laid before them and minimal
input from lab members. Bioinformaticians need to quickly develop a program that reads
in data, performs a calculation, and writes results so lab members will react to the results,
try to validate them, mention specifications/expectations that were not stated initially, or
rethink the problem. The programmer is then expected to refine the program and show new
results to solicit more feedback iteratively.

Productivity is the key to using this evolutionary approach to problem solving. Writing
robust, reusable, and maintainable code is traded for writing code quickly because the
programmer assumes that most code will be modified or discarded during the development
process. Therefore, biologists/bioinformaticians should write code that is 1) functional, 2)
readable, and 3) testable. Functionality is most important because if code does not work,
then it is considered worthless[9]. Readability is necessary so the code can be understood by
all programmers and users on the project. Testability is required because larger programs
have more ways to break and therefore even more tests are needed.

1.4.1 Modularity

The first good practice for writing high-quality large programs is to divide code into small
modules. A module is generally a small block of code that performs one specific task such
as reading FASTA files, ensuring that a DNA sequence contains only the characters A, C,
G, and T, or calculating the average of a set of numbers. The short scripts produced by
intermediate biologists/bioinformaticians can easily be converted into modules; experienced
software developers frequently write scripts that are simultaneously both. The purpose
of creating modules is to take advantage of all the tools and practices discussed in the
Intermediate section. It is also easier for a programmer to write logical and organized code
when creating several small modules and linking them together than when writing one
long linear program. These modules can then be bundled together to form a programmer’s
custom library. A large program ideally should consist of a main program file that accepts
user input and then passes it through a series of modules or library functions.

There are several additional advantages to this practice:

1. Simplify and speed up programming. For example, a program may need to read
several FASTA files to function. In a linear program, the code to load a file would
need to be copied and pasted several times, which decreases the readability of the
code. If the program is modular, the programmer need only create one module in
the library and then reference it as many times as needed in the main program.

2. Library modules are easier to maintain. In a long, linear program that reads

Reproducible Bioinformatics Research for Biologists 17

multiple files, if a bug is found when reading the first FASTA file, then the error
is likely to be in all instances of the code. Novice programmers frequently only
fix those instances where an obvious error is shown, leaving silent errors in other
parts of the program. In the modular example, the bug is fixed once in the module.
Similarly, the module need only be tested once whereas good testing of a linear
program would require many more tests.

3. Modules are easier to reuse for other projects. Once a programmer has written
and tested a module and added it to his/her custom library, it can be used for
all future projects. If the program is linear, the programmer must copy and paste
lines of code from an old program to a new one, and then diligently test the code,
or the programmer will need to reinvent the wheel by writing fresh code to load
FASTA files for each new program.

4. The programmer can easily combine custom modules and third-party libraries to
quickly and e�ciently create large programs.

5. A team of programmers can easily collaborate on a large program when each of
them is writing/testing di↵erent modules.

1.4.2 Code refactoring

Refactoring is the process of changing a program so the code is di↵erent but the results
are same. This is similar to changing a wet-lab procedure so it uses fewer consumables,
less dangerous chemicals, and less time while still generating a result of similar quality.
Once a programmer has a well-tested program that produces the desired results, he/she
can refactor the code so it is more readable and simpler, with emphasis on the readability.
Before beginning, test codes should be written to ensure that the code still runs properly
after refactoring and the code itself should be self-documenting (see Intermediate section).

When refactoring, there are several preferred practices:

1. Remove programming language-specific idioms or overly complex statements to
increase readability. Many programming languages have similar structures and
syntaxes (i.e. a Perl statement can be read by a C++ programmer as long as
it does not use Perl-specific syntax). Also, overly complex statements tend to
contain errors.

2. Divide large functions or modules into smaller ones. As discussed in the modu-
larity section, smaller modules are easier to code, test, and reuse.

3. Remove dead/obsolete code. Because of the evolutionary process discussed pre-
viously, nonfunctional code from earlier versions might be lurking in the code.
Removing obsolete lines will both increase readability and ensure that compute
resources are not wasted on useless processing.

1.4.3 Code optimization

As mentioned previously, interpreted languages are often used to develop bioinformatics
software because they reduce development time with the acceptable tradeo↵ that they are
slower than compiled languages. In some cases, however, performance is critical and the
program may be considered useless if it cannot achieve a particular speed. Optimization
involves identifying the bottlenecks (the slowest sections) and modifying them to use dif-
ferent algorithms or compiled languages. This is similar to a wet-lab biochemist taking a

18 Dummy title

multistep synthetic pathway, determining the rate-limiting steps, and either substituting
those steps with new reactions or using catalysts. Generally, only the bottlenecks should
be optimized; opening one or a few bottlenecks is usually su�cient to achieve the desired
performance without spending time optimizing the entire program. The bottlenecks can
be found using a tool called a profiler, which reports the time and the number of times a
particular function or a method is called. Examples of a profiler are GNU gprof for C/C++
and profile, cProfile, and pstats module for Python.

Note: some common bottlenecks in bioinformatics programs involve loading data multi-

ple times, unnecessary reading/writing data to disk, and ine�cient searching using nested

loops. These can often be solved by using more e�cient algorithms or data structures.

Novice programmers are prone to writing algorithms that mimic how a human would per-

form a task instead of harnessing the abilities of the computer and the specific programming

language. Consultation with other bioinformaticians or with an online forum is a good path

to improving code e�ciency or solving specific problems.

Optimization depends on the languages being used. For a bioinformatics program written
in Perl or Python, a bottleneck function can be rewritten in a compiled language like C++
or Fortran, and then wrapped so the interpreted language can use it. This method can
increase performance by several magnitudes, although poorly written code in a compiled
language may not function as well as well-written code in a scripting language. Experienced
bioinformaticians utilize data structures and libraries that are built into the scripting and
compiled languages, which have been optimized by professional software developers. For
example, in Python, many built-in data structures and functions are actually implemented
in C and wrapped so they can be called using Python code. A biologist/bioinformatician
need only find an appropriate method that has already been optimized and implemented in
a compiled language.

1.4.4 Research documentation

As stated previously, a complete bioinformatic analysis usually consists of running several
third-party software packages, scripts that port data between them, and visualization tools
to represent the final results. To reproduce the results, a biologist must repeat every step
in the analysis in the correct order with the appropriate parameters. Until recently, provid-
ing a complete set of instructions was not trivial. Because the biologist/bioinformatician is
frequently using an evolving procedure, the bookkeeping required for recording detailed pro-
cedures can become complicated. Fortunately, scientists and companies have developed tools
to simplify the process, allowing researchers to conduct computational analyses while simul-
taneously building the final set of instructions. In this section, we introduce the IPython
notebook, which has become popular due to its support of Python, shell commands, and R
(a statistics and graphing language).

1.4.4.1 IPython notebook

IPython notebook is a combined electronic notebook and programming/computing envi-
ronment. Users can create a notebook for a project and link all scripts, programs, and shell
commands, and parameters used to the notebook, including the order in which they are to
be run. Users can then run the analysis from start to finish in the notebook and view/save
output at each step as well as add textual notes and comments. This high level of organi-
zation can boost biologists/bioinformaticians’ productivity while giving them the tools to
run and rerun their analyses reproducibly. A single click will run an entire pipeline, expe-
diting parameter optimization, replicate runs, and reruns after fixing bugs. Automating the
process in the notebook minimizes mistakes from typos and other human errors. Moreover,

Reproducible Bioinformatics Research for Biologists 19

IPython notebook can be run on a remote server, making it suitable for computer clusters
or cloud computing systems. The notebook can be distributed to collaborators who can
rerun all commands and see identical results on their computer without the programmer
writing any additional documentation.

The notebook is not e�cient for running processes that require days to finish. Therefore,

we write shell scripts to perform the laborious number-crunching and use the notebook for

everything else.

The IPython notebook is built on top of IPython, an advanced Python shell for in-
teractive Python programming, but can support many more programming languages. For
example, with the rmagic plugin and Python RPy2 library, users can use R libraries such as
those from Bioconductor (see Resources) and store the results in Python data structures,
which can be further analyzed with Python. This feature reduces the number of steps in
data transformation, which is a common problem in bioinformatics research. Another useful
feature of IPython notebook is an in-line plot, which allows users to use Matplotlib library
or R to make and visualize a plot, and then save it in IPython notebook with comments
and code to create an executable document. Finally, the notebook is stored as a plain text
file that can be version controlled and distributed as discussed above. IPython has many
more plugins and shortcuts that support scientific computing analyses. Shown below is an
example of boosting productivity by using a shortcut:

>>> expression values =!cut -f 2 expression.dat # read in a value from the

second column of a text file

Expression values are contained in expression.dat, and cut is used to select the second
data column (-f 2). This data is then assigned to the Python list variable expression values
for later use. Running this single line in the notebook can take the place of running the
cut command at the command line, saving the results to a file, opening that file in Python,
reading the data, and then assigning it to the list variable. Throughout this chapter we have
emphasized the idea that biologists/bioinformaticians can benefit greatly by utilizing exist-
ing well-tested tools as opposed to reinventing the wheel. IPython has been used by many
scientists for several years; therefore, it is not surprising that there are many commands,
shortcuts, and plugins that perform common tasks elegantly, accurately, and expeditiously.
IPython also allows users to create their own plugins to extend its functionality.

Note: Similar “notebook”-like tools exist for R, as well.

Real World Example

The senior author (C. Titus Brown, MSU) used the IPython notebook to com-
plete parts of a bioinformatics analysis for a recent manuscript, available at
https://github.com/ged-lab/2012-paper-diginorm.git. The author also provides a
tutorial on running the pipeline and reproducing the results using IPython notebook
at http://ged.msu.edu/angus/diginorm-2012/pipeline-notes.html. The analysis was
tested on Amazon cloud service with ami-61885608, which has all the required programs
pre-installed. Anyone can follow the pipeline and use the notebook to reproduce the analysis
from start to finish with identical results with minimal e↵ort.

At the NIH Cloud Computing for the Microbiome workshop in 2012, a team of re-
searchers from di↵erent backgrounds used IPython notebook and StarCluster as collabora-
tion tools to produce publishable results in record time [28].

20 Dummy title

1.5 Related Topics

For biologists/bioinformaticians who have progressed through the Beginner to Advanced
sections, we briefly describe more advanced computing topics that can facilitate accurate,
e�cient computational research.

1.5.1 Using online resources

A wide range of topics relevant to programming, bioinformatics, and data analysis are
discussed online in blogs, Web forums, and Twitter. Perhaps the single most useful approach
to problem solving available is to do an online search for your problem; if it is a problem
or bug that has been encountered in a popular piece of software, a solution will almost
certainly have been posted.

Two particularly useful Web forums for bioinformatics are BioStars and Seqanswers.
We strongly suggest that novice bioinformaticians search these forums for discussions of
tools. Both of these forums also support asking questions, and the online bioinformatics
community is generally very friendly and willing to help; we encourage you to first search
to see if someone has already asked your question, and if not, to then post the question on
one or both of these forums.

1.5.2 Advanced tools

1.5.2.1 Regular expressions

Regular expressions are tools for searching text for a particular pattern of let-
ters/numbers/symbols. For example, a bioinformatician can search for short DNA sequence
motifs in a data file with an unstructured or unusual format. Regular expressions have their
own syntax for defining a specific pattern, which to the casual eye can look like an unintu-
itive shell language. For example, logy\b defines a pattern for a word that ends with logy,
matching biology, physiology, technology, etc. In programming, regular expressions are used
to concisely and quickly search for patterns in data.

1.5.2.2 Debuggers

Code frequently contains errors or bugs that cause unexpected results. While syntax errors
will be caught by the interpreter or compiler, logic errors often go undetected. A debug-
ger allows programmers to interact with their program by running and pausing execution,
stepping in and out of functions or loops, and changing values in variables during execution
to locate a bug. Most programming languages have at least one debugger. GDB is a stan-
dard GNU/Linux debugger that can be used with most compiled programming languages.
Moreover, major IDEs such as Eclipse and Netbeans have built-in debuggers with GUIs.

1.5.2.3 Unit tests and automated testing

Unit testing consists of writing code that tests individual units of a program, such as
functions or modules. Each subunit is tested in isolation; therefore, tests on a given subunit
will not be a↵ected by bugs from other subunits. This procedure helps locate errors in a
large program. Unit testing libraries are available for most major languages and help users
create test suites. Some libraries also provide a test runner to run tests automatically. An
important advantage of automatic testing is that users can test the program to ensure that
the installation process is bug-free. Unit testing also promotes a test-driven development

Reproducible Bioinformatics Research for Biologists 21

process, which helps guarantee that every function works as expected and tests are written
for every function in a program.

Real world example

In our lab, large programming projects have separate folders for test code. However, each
project uses di↵erent libraries for testing; for example, Gimme (https://github.com/likit/gimme)
uses a Python unittest module whereas khmer (http://github.com/ged-lab/khmer.git)
uses user-defined functions, which are recognized and run by the nosetest module. Instruc-
tions for automatically running tests are included in the corresponding README files.

1.5.3 Advanced programming topics

1.5.3.1 Object-oriented programming paradigm

Object-Oriented Programming (OOP) is a standard programming paradigm that creates
”objects,” which usually consist of data and specific methods for operating on that data.
This is useful when a large program needs to have standardized methods for data-processing
but also uses several di↵erent types of data. In addition, objects can be reused or extended
without rewriting them from scratch. This practice has been extensively used throughout
the software industry and in scientific programming because it promotes code maintenance
and expansion.

1.5.3.2 Algorithms and data structures

Most major languages used in scientific computing provide libraries supporting well-
optimized algorithms and data structures. However, using a pre-implemented algorithm
without understanding the underlying concepts is unsafe. Most algorithms have strengths
and weaknesses that should be evaluated based on the specific application. Basic knowledge
of algorithms will help biologists make a correct decision.

1.5.3.3 Compiled languages

While time-consuming, learning a compiled language such as C/C++ gives insight into how
a computer functions because it requires machine-based knowledge. Scripting languages are
designed to abstract away many low-level details to improve programmer productivity. As a
result, it also abstracts away important concepts of computing such as memory management.
A basic understanding of how to program in a compiled language will help biologists write
better code using scripting languages because of a greater understanding of the underlying
mechanisms. In addition, many bioinformatics software packages still use code in compiled
languages to do rapid processing.

1.6 Conclusion

The general problem in the bioinformatics field is not an absence of tools and good practices,
but rather that many researchers lack knowledge and training with them[31]. Embedded in
a scientific culture that is relatively inexperienced with good computational practices, many
biologists make their first foray into bioinformatics with only intuition and the Internet to
guide them. The tools and practices discussed here are intended to help those biologists
build a solid foundation in reproducible computational research. Because it would be im-

22 Dummy title

possible to condense several years of scientific computing and data analysis training into a
single book chapter, we have focused on describing those tools and practices that are par-
ticularly useful for novice bioinformaticians, emphasizing their contribution to productivity
and reproducibility, with the intention of giving biologists the introduction they need to
then seek specific information and step-by-step tutorials elsewhere.

Investing in learning computational tools and practices will yield incalculable return over
the course of a biologist’s career. With the enormous potential for discovery available in this
era of Big Data, datasets can be expected to continue expanding. A biologist who starts
learning and applying general tools and good computing practices now will eventually save
years of time. Moreover, the biologist who invests time in writing tests, using version control,
and automating/distributing analyses in the IPython notebook will both be compliant with
journal and granting agency policies for distributing code and avoid the aggravation of other
scientists repudiating his/her unreproducible results.

While the list of tools and practices to learn might seem overwhelming to biologists
with no prior computational experience, we encourage them to take a systematic approach
to the education process. Just as a wet-lab researcher is trained on one instrument at a
time, practices using it for his/her current project, and then moves on to more complicated
methods, so too can he/she learn computational techniques. Installing software for running
a command line interface and looking through a text file of data is a good start. This simple
task can build confidence with using the command line, and soon the biologist will be ready
to learn simple grep commands to make looking through that text file easier and faster.
Each skill will build upon the last, and the biologist will soon be applying these skills to
his/her research, finding experiments where a new option or tool will accurately process
data in seconds that would otherwise have required hours of mind-numbing clicking. Once
the biologist gains experience with the Beginner tools and practices, he/she will be ready
to tackle the Intermediate section, and the tools and practices described will seem like a
natural progression. As the biologist becomes a more practiced bioinformatician with a
well-stocked toolbox, so too will his/her research advance.

A single biologist using good computational tools and practices can produce a lifetime
of biological breakthroughs and innovation. A team of skilled biologists can work in parallel
to push the limits of biological knowledge in a particular area by several lifetimes. As more
biologists practice reproducible computational research, the sheer breadth and depth of their
work will collectively move the entire field of biology into a new era of scientific discovery.

1.7 Acknowledgments

The authors thank GregWilson, Steve Haddock, Hans Cheng, Randy Olson, Eric McDonald,
Jason Pell, and Cari Hearn for reviewing early drafts of this manuscript.

This chapter is maintained online at http://reproducibility.idyll.org/, where it is being
continuously modified and updated by the authors and members of the scientific community.
Readers are encouraged to visit the associated forum and leave questions/comments.

1.8 Available Resources

Reproducible Bioinformatics Research for Biologists 23

1.8.1 Books

1.8.1.1 UNIX/Linux tools

• Haddock & Dunn Practical Computing for Biologists

• Newham, Cameron Learning the bash Shell [O’Reilly]

• Robbins, Arnold and Dougherty, Dale sed & awk [O’Reilly]

• Cameron, Debra et al. Learning GNU Emacs [O’Reilly]

• Robbins, Arnold et al. Learning the vi and Vim Editors [O’Reilly]

• Neil, Drew Practical Vim: Edit Text at the Speed of Thought [Pragmatic Bookshelf]

• Chacon, Scott Pro Git [Apress]

1.8.1.2 Python

• Campbell, Gries, Montojo and Wilson An introduction to computer science using Python
[Pragmatic Bookshelf]

• Lutz, Mark Learning Python [O’Reilly]

• Model, L Mitchell Bioinformatics Programming Using Python [O’Reilly]

• Vaingast, Shai Beginning Python Visualization [Apress]

• Arbuckle, Daniel Python Testing: Beginner’s Guide [Packtpub]

1.8.1.3 Others

• Joe Pitt-Francis, Jonathan Whiteley Guide to Scientific Computing in C++ [Springer]

• James Tisdall Beginning Perl for Bioinformatics [O’Reilly]

• James Tisdall Mastering Perl for Bioinformatics [O’Reilly]

• Ellie Quigley Perl by Example [Prentice Hall]

• Peter Cooper Beginning Ruby [Apress]

• Joseph Adler R in a Nutshell [O’Reilly]

• Peter Dalgaard Introductory Statistics with R [Springer]

• Paul Teetor R Cookbook [O’Reilly]

1.8.2 Online resources

24 Dummy title

1.8.2.1 UNIX/Linux Tools

• GNU Operating System
http://www.gnu.org

• Cygwin (Linux emulator for Windows)
http://www.cygwin.com

• MSYS+MinGW
textthttp://www.mingw.org/wiki/MSYS

• Vi and Vim
http://www.vim.org/index.php

• Emacs
http://www.gnu.org/software/emacs/

• Github: Git online repository
http://github.com

• Git tutorial
http://git-scm.com

• Mercurial
http://mercurial.selenic.com/

• SVN
http://subversion.apache.org

1.8.2.2 Python

• Python: Python o�cial website
http://python.org

• Python style guide
http://www.python.org/dev/peps/pep-0008/

• The Zen of Python: A guideline for Python coding
http://www.python.org/dev/peps/pep-0020/

• Learn programming by visualizing code execution
http://www.pythontutor.com/

• Python doctests
http://docs.python.org/library/doctest.html

• Python unittest
http://docs.python.org/library/unittest.html

• IPython: Advanced Python shell
http://ipython.org

• Scipy: Scientific tools for Python
http://www.scipy.org/

• Matplotlib: Python plotting library
http://matplotlib.org/

Reproducible Bioinformatics Research for Biologists 25

• Python: Speed and Performance tips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips

• Performance analysis of Python programs
http://www.doughellmann.com/PyMOTW/profile/

1.8.2.3 R

• R O�cial website:
http://www.r-project.org/

• Rseek: Search engine for R related materials
http://rseek.org

• Bioconductors: R packages for bioinformatics
http://bioconductor.org

1.8.2.4 Web Forums

• BioStars: Bioinformatics answers
http://www.biostars.org/

• Seqanswers: Bioinformatics answers
http://seqanswers.com

• Stack Overflow: General programming
http://stackoverflow.com/

1.8.2.5 Others

• Software carpentry: Online training
http://software-carpentry.org

• Rosalind: Learning Bioinformatics
http://rosalind.info/problems/as-table/

• Reproducible Research
http://reproducibleresearch.net

• Analyzing Next-Generation Sequencing Data
http://bioinformatics.msu.edu/ngs-summer-course-2012

Bibliography

[1] Oram A. and Wilson G.V., editors. Making Software: What Really Works, and Why
We Believe It. Farnham: O’Reilly, 2011.

[2] D. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley, A. Chakravarti, A. G.
Clark, F. S. Collins, F. M. De La Vega, P. Donnelly, M. Egholm, P. Flicek, S. B.
Gabriel, R. A. Gibbs, B. M. Knoppers, E. S. Lander, H. Lehrach, E. R. Mardis, G. A.
McVean, D. A. Nickerson, L. Peltonen, A. J. Schafer, S. T. Sherry, J. Wang, R. Wilson,
R. A. Gibbs, D. Deiros, M. Metzker, D. Muzny, J. Reid, D. Wheeler, J. Wang, J. Li,
M. Jian, G. Li, R. Li, H. Liang, G. Tian, B. Wang, J. Wang, W. Wang, H. Yang,
X. Zhang, H. Zheng, E. S. Lander, D. L. Altshuler, L. Ambrogio, T. Bloom, K. Cibul-
skis, T. J. Fennell, S. B. Gabriel, D. B. Ja↵e, E. Shefler, C. L. Sougnez, D. R. Bentley,
N. Gormley, S. Humphray, Z. Kingsbury, P. Kokko-Gonzales, J. Stone, K. J. McK-
ernan, G. L. Costa, J. K. Ichikawa, C. C. Lee, R. Sudbrak, H. Lehrach, T. A. Boro-
dina, A. Dahl, A. N. Davydov, P. Marquardt, F. Mertes, W. Nietfeld, P. Rosenstiel,
S. Schreiber, A. V. Soldatov, B. Timmermann, M. Tolzmann, M. Egholm, J. A↵ourtit,
D. Ashworth, S. Attiya, M. Bachorski, E. Buglione, A. Burke, A. Caprio, C. Celone,
S. Clark, D. Conners, B. Desany, L. Gu, L. Guccione, K. Kao, J. Kebbler, J. Knowl-
ton, M. Labrecque, L. McDade, C. Mealmaker, M. Minderman, A. Nawrocki, F. Niazi,
K. Pareja, R. Ramenani, D. Riches, W. Song, C. Turcotte, S. Wang, E. R. Mardis,
R. K. Wilson, D. Dooling, L. Fulton, R. Fulton, G. Weinstock, R. M. Durbin, J. Bur-
ton, D. M. Carter, C. Churcher, A. Co↵ey, A. Cox, A. Palotie, M. Quail, T. Skelly,
J. Stalker, H. P. Swerdlow, D. Turner, A. De Witte, S. Giles, R. A. Gibbs, D. Wheeler,
M. Bainbridge, D. Challis, A. Sabo, F. Yu, J. Yu, J. Wang, X. Fang, X. Guo, R. Li,
Y. Li, R. Luo, S. Tai, H. Wu, H. Zheng, X. Zheng, Y. Zhou, G. Li, J. Wang, H. Yang,
G. T. Marth, E. P. Garrison, W. Huang, A. Indap, D. Kural, W. P. Lee, W. F. Leong,
A. R. Quinlan, C. Stewart, M. P. Stromberg, A. N. Ward, J. Wu, C. Lee, R. E. Mills,
X. Shi, M. J. Daly, M. A. DePristo, D. L. Altshuler, A. D. Ball, E. Banks, T. Bloom,
B. L. Browning, K. Cibulskis, T. J. Fennell, K. V. Garimella, S. R. Grossman, R. E.
Handsaker, M. Hanna, C. Hartl, D. B. Ja↵e, A. M. Kernytsky, J. M. Korn, H. Li, J. R.
Maguire, S. A. McCarroll, A. McKenna, J. C. Nemesh, A. A. Philippakis, R. E. Poplin,
A. Price, M. A. Rivas, P. C. Sabeti, S. F. Scha↵ner, E. Shefler, I. A. Shlyakhter, D. N.
Cooper, E. V. Ball, M. Mort, A. D. Phillips, P. D. Stenson, J. Sebat, V. Makarov, K. Ye,
S. C. Yoon, C. D. Bustamante, A. G. Clark, A. Boyko, J. Degenhardt, S. Gravel, R. N.
Gutenkunst, M. Kaganovich, A. Keinan, P. Lacroute, X. Ma, A. Reynolds, L. Clarke,
P. Flicek, F. Cunningham, J. Herrero, S. Keenen, E. Kulesha, R. Leinonen, W. M.
McLaren, R. Radhakrishnan, R. E. Smith, V. Zalunin, X. Zheng-Bradley, J. O. Ko-
rbel, A. M. Stutz, S. Humphray, M. Bauer, R. K. Cheetham, T. Cox, M. Eberle,
T. James, S. Kahn, L. Murray, A. Chakravarti, K. Ye, F. M. De La Vega, Y. Fu,
F. C. Hyland, J. M. Manning, S. F. McLaughlin, H. E. Peckham, O. Sakarya, Y. A.
Sun, E. F. Tsung, M. A. Batzer, M. K. Konkel, J. A. Walker, R. Sudbrak, M. W. Al-
brecht, V. S. Amstislavskiy, R. Herwig, D. V. Parkhomchuk, S. T. Sherry, R. Agarwala,
H. M. Khouri, A. O. Morgulis, J. E. Paschall, L. D. Phan, K. E. Rotmistrovsky, R. D.
Sanders, M. F. Shumway, C. Xiao, G. A. McVean, A. Auton, Z. Iqbal, G. Lunter, J. L.

27

28 Dummy title

Marchini, L. Moutsianas, S. Myers, A. Tumian, B. Desany, J. Knight, R. Winer, D. W.
Craig, S. M. Beckstrom-Sternberg, A. Christoforides, A. A. Kurdoglu, J. V. Pearson,
S. A. Sinari, W. D. Tembe, D. Haussler, A. S. Hinrichs, S. J. Katzman, A. Kern,
R. M. Kuhn, M. Przeworski, R. D. Hernandez, B. Howie, J. L. Kelley, S. C. Melton,
G. R. Abecasis, Y. Li, P. Anderson, T. Blackwell, W. Chen, W. O. Cookson, J. Ding,
H. M. Kang, M. Lathrop, L. Liang, M. F. Mo↵att, P. Scheet, C. Sidore, M. Snyder,
X. Zhan, S. Zollner, P. Awadalla, F. Casals, Y. Idaghdour, J. Keebler, E. A. Stone,
M. Zilversmit, L. Jorde, J. Xing, E. E. Eichler, G. Aksay, C. Alkan, I. Hajirasouliha,
F. Hormozdiari, J. M. Kidd, S. C. Sahinalp, P. H. Sudmant, E. R. Mardis, K. Chen,
A. Chinwalla, L. Ding, D. C. Koboldt, M. D. McLellan, D. Dooling, G. Weinstock,
J. W. Wallis, M. C. Wendl, Q. Zhang, R. M. Durbin, C. A. Albers, Q. Ayub, S. Bala-
subramaniam, J. C. Barrett, D. M. Carter, Y. Chen, D. F. Conrad, P. Danecek, E. T.
Dermitzakis, M. Hu, N. Huang, M. E. Hurles, H. Jin, L. Jostins, T. M. Keane, S. Q.
Le, S. Lindsay, Q. Long, D. G. MacArthur, S. B. Montgomery, L. Parts, J. Stalker,
C. Tyler-Smith, K. Walter, Y. Zhang, M. B. Gerstein, M. Snyder, A. Abyzov, S. Bal-
asubramanian, R. Bjornson, J. Du, F. Grubert, L. Habegger, R. Haraksingh, J. Jee,
E. Khurana, H. Y. Lam, J. Leng, X. J. Mu, A. E. Urban, Z. Zhang, Y. Li, R. Luo, G. T.
Marth, E. P. Garrison, D. Kural, A. R. Quinlan, C. Stewart, M. P. Stromberg, A. N.
Ward, J. Wu, C. Lee, R. E. Mills, X. Shi, S. A. McCarroll, E. Banks, M. A. DePristo,
R. E. Handsaker, C. Hartl, J. M. Korn, H. Li, J. C. Nemesh, J. Sebat, V. Makarov,
K. Ye, S. C. Yoon, J. Degen. A map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061–1073, Oct 2010.

[3] W. J. Ansorge. Next-generation DNA sequencing techniques. N Biotechnol, 25(4):195–
203, Apr 2009.

[4] No authors listed. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science,
306(5696):636–640, Oct 2004.

[5] Boehm B., Rombach H.D., and Zelkowitz M.V., editors. Foundations of empirical
software engineering: the legacy of Victor R. Basili. Springer, 2005.

[6] W. Bialek and D. Botstein. Introductory science and mathematics education for 21st-
Century biologists. Science, 303(5659):788–790, Feb 2004.

[7] F. S. Collins, M. Morgan, and A. Patrinos. The Human Genome Project: lessons from
large-scale biology. Science, 300(5617):286–290, Apr 2003.

[8] Heaton D., Carver J. C., Barlett R., Oakes K., and Hochstein L. The relationship
between development problems and use of software engineering practices in computa-
tional science and engineering: a survey. website, 2012. http://www.software.ac.
uk/sites/default/files/softwarepractice2012_submission_10.pdf.

[9] Kelly D. and Sanders R. Assessing the Quality of Scientific Software. website, 2008.
http://secse08.cs.ua.edu/Papers/Kelly.pdf.

[10] S. A. Forbes, N. Bindal, S. Bamford, C. Cole, C. Y. Kok, D. Beare, M. Jia, R. Shepherd,
K. Leung, A. Menzies, J. W. Teague, P. J. Campbell, M. R. Stratton, and P. A. Futreal.
COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in
Cancer. Nucleic Acids Res., 39(Database issue):D945–950, Jan 2011.

[11] Wilson G. Where’s the real bottleneck in scientific computing? American Scientist,
94(1), 2006.

Bibliography 29

[12] D. C. Ince, L. Hatton, and J. Graham-Cumming. The case for open computer programs.
Nature, 482(7386):485–488, Feb 2012.

[13] Segal J. Sone problems of professional end user developers. In: IEEE Symposium on
Visual Languages and Human-Centric Computing, 2007.

[14] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. De-
von, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford,
J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim,
J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. San-
tos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian,
D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton,
C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham,
R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt,
M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin,
A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wil-
son, L. W. Hillier, J. D. McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T.
Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty,
T. L. Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J.
Minx, S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wen-
ning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher,
M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer, J. B. Bouck, E. J. Sodergren,
K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker, S. L. Naylor, R. S. Kucher-
lapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada,
A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach,
R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert,
P. Wincker, D. R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H. M. Lee,
J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang,
J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R. W. Davis,
N. A. Federspiel, A. P. Abola, M. J. Proctor, R. M. Myers, J. Schmutz, M. Dickson,
J. Grimwood, D. R. Cox, M. V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki,
S. Minoshima, G. A. Evans, M. Athanasiou, R. Schultz, B. A. Roe, F. Chen, H. Pan,
J. Ramser, H. Lehrach, R. Reinhardt, W. R. McCombie, M. de la Bastide, N. Ded-
hia, H. Blocker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. A. Bailey,
A. Bateman, S. Batzoglou, E. Birney, P. Bork, D. G. Brown, C. B. Burge, L. Cerutti,
H. C. Chen, D. Church, M. Clamp, R. R. Copley, T. Doerks, S. R. Eddy, E. E. Eich-
ler, T. S. Furey, J. Galagan, J. G. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler,
H. Hermjakob, K. Hokamp, W. Jang, L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk,
S. Kennedy, W. J. Kent, P. Kitts, E. V. Koonin, I. Korf, D. Kulp, D. Lancet, T. M.
Lowe, A. McLysaght, T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P.
Ponting, G. Schuler, J. Schultz, G. Slater, A. F. Smit, E. Stupka, J. Szustakowski,
D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams,
Y. I. Wolf, K. H. Wolfe, S. P. Yang, R. F. Yeh, F. Collins, M. S. Guyer, J. Peter-
son, A. Felsenfeld, K. A. Wetterstrand, A. Patrinos, M. J. Morgan, P. de Jong, J. J.
Catanese, K. Osoegawa, H. Shizuya, S. Choi, Y. J. Chen, and J. Szustakowki. Initial
sequencing and analysis of the human genome. Nature, 409(6822):860–921, Feb 2001.

[15] C. M. Lewis, A. Obregon-Tito, R. Y. Tito, M. W. Foster, and P. G. Spicer. The Human
Microbiome Project: lessons from human genomics. Trends Microbiol., 20(1):1–4, Jan
2012.

[16] E. R. Mardis. Anticipating the 1,000 dollar genome. Genome Biol., 7(7):112, 2006.

30 Dummy title

[17] G. Miller. Scientific publishing. A scientist’s nightmare: software problem leads to five
retractions. Science, 314(5807):1856–1857, Dec 2006.

[18] A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz. Research
priorities. Shining light into black boxes. Science, 336(6078):159–160, Apr 2012.

[19] R. M. Myers, J. Stamatoyannopoulos, M. Snyder, I. Dunham, R. C. Hardison, B. E.
Bernstein, T. R. Gingeras, W. J. Kent, E. Birney, B. Wold, G. E. Crawford, B. E. Bern-
stein, C. B. Epstein, N. Shoresh, J. Ernst, T. S. Mikkelsen, P. Kheradpour, X. Zhang,
L. Wang, R. Issner, M. J. Coyne, T. Durham, M. Ku, T. Truong, L. D. Ward, R. C. Alt-
shuler, M. F. Lin, M. Kellis, T. R. Gingeras, C. A. Davis, P. Kapranov, A. Dobin, C. Za-
leski, F. Schlesinger, P. Batut, S. Chakrabortty, S. Jha, W. Lin, J. Drenkow, H. Wang,
K. Bell, H. Gao, I. Bell, E. Dumais, J. Dumais, S. E. Antonarakis, C. Ucla, C. Borel,
R. Guigo, S. Djebali, J. Lagarde, C. Kingswood, P. Ribeca, M. Sammeth, T. Alioto,
A. Merkel, H. Tilgner, P. Carninci, Y. Hayashizaki, T. Lassmann, H. Takahashi, R. F.
Abdelhamid, G. Hannon, K. Fejes-Toth, J. Preall, A. Gordon, V. Sotirova, A. Rey-
mond, C. Howald, E. Graison, J. Chrast, Y. Ruan, X. Ruan, A. Shahab, W. Ting Poh,
C. L. Wei, G. E. Crawford, T. S. Furey, A. P. Boyle, N. C. She�eld, L. Song, Y. Shi-
bata, T. Vales, D. Winter, Z. Zhang, D. London, T. Wang, E. Birney, D. Keefe, V. R.
Iyer, B. K. Lee, R. M. McDaniell, Z. Liu, A. Battenhouse, A. A. Bhinge, J. D. Lieb,
L. L. Grasfeder, K. A. Showers, P. G. Giresi, S. K. Kim, C. Shestak, R. M. Myers,
F. Pauli, T. E. Reddy, J. Gertz, E. C. Partridge, P. Jain, R. O. Sprouse, A. Bansal,
B. Pusey, M. A. Muratet, K. E. Varley, K. M. Bowling, K. M. Newberry, A. S. Ne-
smith, J. A. Dilocker, S. L. Parker, L. L. Waite, K. Thibeault, K. Roberts, D. M.
Absher, B. Wold, A. Mortazavi, B. Williams, G. Marinov, D. Trout, S. Pepke, B. King,
K. McCue, A. Kirilusha, G. DeSalvo, K. Fisher-Aylor, H. Amrhein, J. Vielmetter,
G. Sherlock, A. Sidow, S. Batzoglou, R. Rauch, A. Kundaje, M. Libbrecht, E. H.
Margulies, S. C. Parker, L. Elnitski, E. D. Green, T. Hubbard, J. Harrow, S. Searle,
F. Kokocinski, B. Aken, A. Frankish, T. Hunt, G. Despacio-Reyes, M. Kay, G. Mukher-
jee, A. Bignell, G. Saunders, V. Boychenko, M. Van Baren, R. H. Brown, E. Khurana,
S. Balasubramanian, Z. Zhang, H. Lam, P. Cayting, R. Robilotto, Z. Lu, R. Guigo,
T. Derrien, A. Tanzer, D. G. Knowles, M. Mariotti, W. James Kent, D. Haussler,
R. Harte, M. Diekhans, M. Kellis, M. Lin, P. Kheradpour, J. Ernst, A. Reymond,
C. Howald, E. A. Graison, J. Chrast, M. Tress, J. M. Rodriguez, M. Snyder, S. G.
Landt, D. Raha, M. Shi, G. Euskirchen, F. Grubert, M. Kasowski, J. Lian, P. Cayting,
P. Lacroute, Y. Xu, H. Monahan, D. Patacsil, T. Slifer, X. Yang, A. Charos, B. Reed,
L. Wu, R. K. Auerbach, L. Habegger, M. Hariharan, J. Rozowsky, A. Abyzov, S. M.
Weissman, M. Gerstein, K. Struhl, N. Lamarre-Vincent, M. Lindahl-Allen, B. Miotto,
Z. Moqtaderi, J. D. Fleming, P. Newburger, P. J. Farnham, S. Frietze, H. O’Geen,
X. Xu, K. R. Blahnik, A. R. Cao, S. Iyengar, J. A. Stamatoyannopoulos, R. Kaul,
R. E. Thurman, H. Wang, P. A. Navas, R. Sandstrom, P. J. Sabo, M. Weaver, T. Can-
field, K. Lee, S. Neph, V. Roach, A. Reynolds, A. Johnson, E. Rynes, E. Giste, S. Vong,
J. Neri, T. Frum, E. M. Johnson, E. D. Nguyen, A. K. Ebersol, M. E. Sanchez, H. H.
She↵er, D. Lotakis, E. Haugen, R. Humbert, T. Kutyavin, T. Shafer, J. Dekker, B. R.
Lajoie, A. Sanyal, W. James Kent, K. R. Rosenbloom, T. R. Dreszer, B. J. Raney, G. P.
Barber, L. R. Meyer, C. A. Sloan, V. S. Malladi, M. S. Cline, K. Learned, V. K. Swing,
A. S. Zweig, B. Rhead, P. A. Fujita, K. Roskin, D. Karolchik, R. M. Kuhn, D. Haus-
sler, E. Birney, I. Dunham, S. P. Wilder, D. Keefe, D. Sobral, J. Herrero, K. Beal,
M. Lukk, A. Brazma, J. M. Vaquerizas, N. M. Luscombe, P. J. Bickel, N. Boley, J. B.
Brown, Q. Li, H. Huang, M. Gerstein, L. Habegger, A. Sboner, J. Rozowsky, R. K.
Auerbach, K. Y. Yip, C. Cheng, K. K. Yan, N. Bhardwaj, J. Wang, L. Lochovsky,
J. Jee, T. Gibson, J. Leng, J. Du, R. C. Hardison, R. S. Harris, G. Song, W. Miller,

Bibliography 31

D. Haussler, K. Roskin, B. Suh, T. Wang, B. Paten, W. S. Noble, M. M. Ho↵man,
O. J. Buske, Z. Weng, X. Dong, J. Wang, H. Xi, S. A. Tenenbaum, F. Doyle, L. O. Pe-
nalva, S. Chittur, T. D. Tullius, S. C. Parker, K. P. White, S. Karmakar, A. Victorsen,
N. Jameel, N. Bild, R. L. Grossman, M. Snyder, S. G. Landt, X. Yang, D. Patacsil,
T. Slifer, J. Dekker, B. R. Lajoie, A. Sanyal, Z. Weng, T. W. Whitfield, J. Wang,
P. J. Collins, N. D. Trinklein, E. C. Partridge, R. M. Myers, M. C. Giddings, X. Chen,
J. Khatun, C. Maier, Y. Yu, H. Gunawardena, B. Risk, E. A. Feingold, R. F. Lowdon,
L. A. Dillon, P. J. Good, J. Harrow, and S. Searle. A user’s guide to the encyclopedia
of DNA elements (ENCODE). PLoS Biol., 9(4):e1001046, Apr 2011.

[20] NIAID and NHGRI. Eukaryotic Pathogen and Disease Vector Sequencing Project.
Website, 2012. http://www.niaid.nih.gov/labsandresources/resources/dmid/
gsc/pathogen/Pages/default.aspx.

[21] NIEHS. Environmental Genome Project. Website, 2012. http://egp.gs.washington.
edu/.

[22] NIH. Centers for Mendelian Genomics. Website, 2012. http://www.genome.gov/
27546192.

[23] NIH. Clinical Sequencing Exploratory Research. Website, 2012. http://www.genome.
gov/27546194.

[24] NIH. International HapMap Project. Website, 2012. http://hapmap.ncbi.nlm.nih.
gov/.

[25] no authors listed. Free Software Foundation. Website, 2012. http://www.fsf.org/.

[26] U.S. Department of Energy. Human Genome Project Information. Website, 2012.
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml.

[27] P. Pevzner and R. Shamir. Computing has changed biology–biology education must
catch up. Science, 325(5940):541–542, Jul 2009.

[28] B. Ragan-Kelley, W. A. Walters, D. McDonald, J. Riley, B. E. Granger, A. Gonzalez,
R. Knight, F. Perez, and J. G. Caporaso. Collaborative cloud-enabled tools allow rapid,
reproducible biological insights. ISME J, Oct 2012.

[29] B. J. Strasser and M. O. Dayho↵. Collecting, comparing, and computing sequences: the
making of Margaret O. Dayho↵’s Atlas of Protein Sequence and Structure, 1954-1965.
J Hist Biol, 43(4):623–660, 2010.

[30] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis,
Richard T. Guy, Steven H. D. Haddock, Katy Hu↵, Ian Mitchell, Mark Plumbley,
Ben Waugh, Ethan P. White, and Paul Wilson. Best practices for scientific computing.
arXiv, abs/1210.0530, 2012.

[31] Merali Z. ...why scientific programming does not compute. Nature, 467:775–7, Oct
2010.

[32] I. B. Zhulin. It is computation time for bacteriology! J. Bacteriol., 191(1):20–22, Jan
2009.

